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IMPORTANT NOTICE

Certain commercial equipment is identified in this report. This identification
does not imply endorsement by the National Bureau of Standards nor does it imply
that the equipment identified is necessarily the best available for the purpose.
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RF ATTENUATION MEASUREMENT SYSTEM USING A SQUID*
Robert T. Adair, Nolan V. Frederick, and Donald B. Sullivan

This report describes a unique portable system for measuring attenuation
at 30 MHz over a range of 50 dB to an accuracy of 0.005 dB per 20 dB. This
system does not require any reference standard. A SQUID (Superconducting
QUantum Interference Device) with its associated instrumentation is used to
determine attenuation in terms of Bessel Function Zeros. A SQUID is a loop of
superconducting metal closed by a weak point contact called a Josephson junc-

tion, operating in liquid helium,
The system specifications, description, and theory of operation are

presented. A complete system operating procedure including data reduction
techniques is given along with a discussion of sources of errors.
Considerable additional information and diagrams are presented as an aid

to the user in understanding and operating the system.
Key words: Josephson junction; quantum interference; rf attenuation;
superconductivity.

1. GENERAL INFORMATION
1.1 Introduction

This document contains a description, specifications, operating procedures, theory of
operation, and parts list for the RF Attenuation Measurement System based on the SQUID.
This gystem, designed and constructed by the National Bureau of Standards (NBS), Boulder,
Colorado, is a compact portable system designed as a very precise standard for calibrating
This system does not require any reference standard.

various types of laboratory attenuators.
This attenuator calibration

It is relatively inexpensive and easy to set up and operate.
system has several unique features:
The relative ease of construction of the system, e.g., the accuracy of the

a.
measurements, does not depend on high precision machining of mechanical parts

such as in waveguide below cutoff attenuators.

b. The system does not require a standard of attenuation. It requires only a table

of Bessel functions to determine the exact change in attenuation between any two

2 given flux quanta nulls.

C. This technique provides a broad frequency range of operation without tuning.

The readout technique makes it relatively easy to automate measurements.

A superconducting quantum interference device (SQUID) can be thought of as a transducer
that converts variations in magnetic flux into nearly perfect periodic variations in micro-
wave impedance which are sensed as the change in the microwave reflection coefficient. Most

of the applications of SQUIDs, e.g., magnetometers, gradiometers, etc., have capitalized on

their high sensitivity and their unique periodic response to magnetic flux. However, the rf

attenuation application is the first which attempts to capitalize on the particular character-

istics of the waveform of the rf biased SQUID. In this respect, the success of the continuing

efforts on the attenuation application is a measure of the utility of the SQUID waveform.
The period of a SQUID corresponds to one magnetic flux quantum
(oo = 2e/h = 2,067854 x 10-15 Wb). This provides a convenient natural means of measuring

attenuation.
*Superconducting Quantum Interference Device.
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These devices are very accurate over a wide dynamic range. Electrical quantities are
measured by counting periods (flux quanta) in the response of a SQUID in the same manner that
length can be measured by counting wavelengths of light emitted by a laser.

Under ideal conditions, if the SQUID input current I is an rf current, then the SQUID
output response is the zero-order Bessel function of the magnitude of the rf input current.

Thus the output of the microwave readout circuit is proportional to J5(27I/I;) where I
is the rf input current amplitude and I; is the current necessary to drive one quantum of
magnetic flux into the SQUID. I, need not be known to make attenuation measurements. The
values of the argument 2m1/I; at the flux quanta nulls or zeros can be found in a table of
Bessel functions. A properly constructed single measurement system can be used to measure
attenuation from dc to 1 GHz with accuracies comparable to existing conventional techniques.
Several successful prototype measurement systems have been constructed at the National
Bureau of Standards based on the SQUID [1,2].* The system described here operates only at
30 MHz primarily to calibrate 30-MHz variable waveguide below-cutoff attenuators.

This SQUID system for rf attenuation measurement has been improved over earlier systems
by a number of significant changes. A redesign of the L-band SQUID has resulted in a signi-
ficantly simpler geometry which provides an adjustable coupling for precise matching to the
electronics. The redesigned SQUID contains a permanently adjusted point contact in a
replaceable cartridge.

Attenuation measurements with this system rely heavily on proper signal processing
in the room temperature components, and a careful study of these conditions indicates a series
of areas where errors can be generated. These signal handling problems and appropriate solu-~
tions are discussed in detail. This system is engineered for routine measurements in a real

standards laboratory environment.

1.2 Specifications

Electrical

Frequency of Operation 30 MHz

(can be altered with appropriate

rf source plug-in modules)
Input and Output Impedances 50.4+ 3O ohms

(VSWR 1.05 at insertion point)
Attenuation Measurement Range v 50 dB
Resettability + 0.001 dB
Repeatability + 0.001 dB
Calibration Accuracy *+ (0.005 dB/20 dB)
RF Input Power to Device Under Test 250 mW maximum
AC Power Requirement 115 VAC, 60 Hz

1.0 Ampere (nominal)

*Figures in brackets indicate the literature references at the end of this paper.

1-2
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Mechanical

Connectors at Insertion Point Precision Type N
SQUID Control Chassis SQUID Readout Chassis
Dimension:

width 5.9 cm 52.0 cm

Depth 17.2 cm 50.0 cm

(including knobs)
Height 21.2 cm 40.3 cm
Mass 2.4 kg 21.9 kg
Cryogenic

Dewar SQUID
Gross Capacity 33.3 liters Material Babbitt
Evaporation 2.0%/day wax. (with Niobium Point contact)
Height 111.4 cm Height 3.7 cm

(with casters) (including connectors)
Outside Diameter 53.3 cm Diameter 3.4 cm
Mass Empty 33.1 kg Mass = 305 gm

(with casters)
Mass Full = 37.3 kg

(with casters)

Neck Inner Diameter 38.1 mm

1.3 Description

The system shown in figures 1.1 and 1.2 is a precise attenuation measurement system
having an accurate dynamic range of 50 to 60 dB nominally. This means an actual measure-
ment range of 50 to 60 dB when calibrating an NBS Model VII attenuation standard which
has an initial insertion loss of 30 dB. Basically the system consists of an rf biased
SQUID; an electronics package (the SQUID Readout Unit) figure 1.3, consisting of an rf
signal source (30 MHz in the original system), amplifier, rf level control circuit, digital
counter with trigger circuit, oscilloscope, and associated controls and power supplies; and
the null indicator for the NBS designed phase-sensitive detector which serves as the (Bessel
Function) null detector. A second electronics package (the SQUID Control Unit), figure 1.4,
mounts on top of the Dewar. This unit contains the L-Band pump frequency components on one
side and the signal processing electronics on the other side. This measurement system is
complete when the device under test (DUT) is connected in the measurement channel at the
insertion point.

The system, exclusive of the DUT and the associated interconnecting cables and hardware,
will be elaborated on here.

1-3
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Figure 1.2 illustrates the interconnections of the system components. The major
changes from earlier systems [3] have been (a) to replace the simple diode detector with a
double-balanced mixer to linearize the 1-GHz detection process and (b) to add a second
harmonic phase sensitive (coherent) detector in parallel with the main signal channel. The
1-GHz components and the main signal processing electronics are housed in an aluminum box
which is attached directly to the top of the 30-liter liquid helium dewar containing the
SQUID. The SQUID connects to this box via a short length of semi-risid coaxial cable.
Every effort was made to minimize the reflections in the 1-GHz system since these reflec-
tions distort the frequency response of the system. Ground loops have been minimized to
pPrevent unwanted interactions between circuit components, and these components have been
very carefully shielded from external interference. Highly stable components have been
used throughout the dc bias and signal processing (1-kHz) circuits so that there are no
difficulties in adjusting and maintaining the proper SQUID operating conditions. The
rationale behind the addition of the second harmonic detector is explained in the theory
section of this document.

1.3.1 Description of SQUID Control Unit

A major advance in this system over previous prototype systems has been the complete
repackaging and improvement of the electronic readout system. The availability of smaller
and substantially better components in the 1-GHz range has allowed us to move a major por-
tion of the readout system into a small package on top of the cryogenic vessel. The close
proximity of SQUID and readout has completely eliminated some long-standing difficulties
with interference and bias stability. The readout system is now remarkably stable and
should present no further problems. The motivation for a new packaging approach for this
attenuation measurement system was the need for resolution at the thousandth of a dB level,
as well as the ever-present problems with interference, rf leakage, and ground-loop currents.

The outstanding performance of the readout system has provided the opportunity to
systematically define the range of operating parameters over which good attenuation cali-
brations can be made. The results of these test= are included in this report and clearly
indicate a perforaance which meets our earlier expectations. The effect of nonoptimum
settings is not great, and once set, the optimum (microwave pump) frequency should not need
resetting unless the SQUID is CHANGED.

The Control Unit containé the dc, l-kHz, and 1-GHz bias circuits and is mounted on the
Dewar %“z.d as shown in figure 1.1. The 1-GHz bias components (i.e., the oscillator, at-
tenuator, directional coupler, amplifier, and double-balanced mixer) are mounted as near as
possible to the SQUID to reduce the frequency-dependent variations in signal level which are
¢ssociated with line resonances generated by slightly imperfect impedance matching. These
elements are mounted in a thermally-stable, rf tight, machined-aluminum box. Every effort
has been made to design and construct the bias circuits for maximum stability. There is no
discernible pickup or interaction between the different circuits. Typically, the fractiomal
varistions of l-kilz and dc bias signals are of the order of a few parts in 105 with 10%
variations in line voltage and 1°C variations in temperature.

1-6
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The bias and setup controls shown in figure 1.3 are mounted on the aluminum enclosure
to eliminate pickup and thermal effects. The dc and 1-kHz circuits are illustrated in
figures 1.4, 1.5, and 1.6. The 1-GHz components are on the reverse side as shown in
figures 1.7, 1.8, and 1.9. The manually-tuned phase shifter in the lower left quadrant
of figure 1.7 serves to deliver the reference signal to the double-balanced mixer. The
phase of the reference signal is matched to the primary signal phase to assure a proper
phase relationship at the mixer over a wide tuning range. The use of a double-balanced
mixer ensures linear detection of only the signal component which varies as the zeroth
order Bessel function. All the 1-GHz elements are state-of-the-art commercial components.
The mechanical attenuator used in previous units has been replaced with a voltage variable

attenuator which 1is housed in the oscillator enclosure.

1.3.2 Description of SQUID Readout Unit

The Readout Unit (shown in figure 1.10) consists of the RF Source and Null Indicating
Unit, a digital counter for counting the Bessel function zeros, and an oscilloscope to
monitor the SQUID interference pattern during the setup procedure.

The RF Source and Null Indicating Unit mounts in the Readout Unit cabinet and contains
the system power supplies, the 2-kHz phase sensitive detector, the 30-MHz crystal controlled
source, the circuit for 30-MHz level control, the readout null meter, and the count generating
circuits. This unit is illustrated in figures 1.11, 1,12, 1.13, and 1.14. The components
are mounted in modular units, and one need only replace the rf source (30-MHz) module in
order to change to another calibration frequency.

The level control circuit shown in figure 1.15 is a precisely-controlled, manually-
operated rf output level-set attenuator. The varfable capacitor (THCz) acts as a
variable termination on one port of the hybrid junction contained in the RF Signal Source
plug-in module which supplies the Device Under Test with the calibrating frequency signal.

The combination of the variable termination (THCZ) and the 180° hybrid junction

"
$
i
3

serves as a variable attenuator on the output of the 30-MHz source.

The rf signal source module (shown in figures 1.15, 1.16, and 1.17) consists of a
30-MHz crystal-controlled oscillator, a 30-MHz amplifier, and a signal level controller
which operates like a variable attenuator as shown in figure 1.19. This 30-MHz signal
appears at the "RF OUTPUT" jack (J4) on the rear panel of the SQUID Readout Unit. The
Setup/Run switch on the front panel of the plug~in controls a coaxial relay which switches
the rf signal into a 50-ohm load when the switch is placed in the "SETUP" position. This
allows the SQUID control parameters to be set up for optimum operation of the system
without the 30-MHz measurement signal interfering.

The rf signal level controller consists of a 180° hybrid junction with 65 dB of isola-
tion between the E and H arms. The rf output from the 30-MHz amplifier is fed into the H
arm, and the rf output from the E arm is connected via J4 to the input port on the Device
Under Test. Colinear arm No. 1 is terminated in a variable piston capacitor with a range
from 0.7 to 30 picofarad. Colinear arm No. 2 is also terminated with a variable piston
capacitor which serves as a variable termination. See figures 1.15, 1.16, 1.17, and 1.18.
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Figure 1.3.

SQUID control unit.
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Fisure 1.4. DC and 1-~kHz circuits (for bias and detection) contained
in the SQUID control unit.
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Figure 1.7.

Microwave bias components contained in the SQUID control
unit.
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Figure 1.15. 30-MHz plug-in module showing output level adjust components.
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Ficure 1.17. Top view of rf source module.
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The hybrid junction connected in this configuration operates as a very good variable rf
attenuator having an insertion loss of 3 dB and a range of 65 dB which is a significant
improvement over available commercial voltage variable attenuators. Figure 1.15 illustrates
the basic connections for this device. When the capacitor on hybrid arm No. 1 is maximum,
the two side arms of the hybrid junction are extremely unbalanced, so their reflections
combine constructively and the device transmits power with less than 3-dB attenuation. When
the capacitor on arm No. 1 1s minimum, it is balanced by the piston capacitor terminating
the opposite port, so that the two signals cancel and the transmitted rf power is attenuated
by as much as 65 dB. At intermediate capacitance settings there is a convenient relation-
ship between the capacitor dial setting and rf output voltage over the range of attenuation
as shown in figure 1.18. This allows nulls in the response of the SQUID to be counted at a
steady rate when the capacitor dial on the source plug-in is varied. Because of the high
rf level, the power out of this source should be set to the desired level with a power
meter connected to jack J4 prior to connecting a DUT into the system. Usually precise
settings (calibration) of the Device Under Test are always made with the capacitor near its
maximum (i.e., the condition of maximum transmission of rf power which allows the maximum
dynamic range).

Figure 1.18 presents the characteristic curve of this variable attenuator.

1.3.3 Description of the SQUID Signal Processing Circuits

The SQUID signal processing circuits consist of the following:

1. The 1-GHz biasing circuit, figures 1.2, 1.7, and 1.8.

s The 1-kHz or zero detecting circuits (contained in the SQUID Control Unit),
figures 1.2, 1.4, 1.5, and 1.6,

3. The 2-kHz phase sensitive detector circuits (contained in the SQUID Readout
Unit), figures 1.19, 1.20, and 1.21.

4. The counter-pulse generator and null indicator circuits (contained in the SQUID
Readout Unit), figures 1.22, 1.23, and 1.24.

The function of each of these circuits is described below.

1.3.3.1 The 1~-GHz Biasing Circuit

The 1-GHz biasing circuit (figs. 1.2, 1.7, 1.8, and 3.6) consists of an Avantek type
VTO 8090 voltage tunable (.96 - 1.6 GHz) oscillator, an Avantek UTF015 voltage variable
attenuator, a 60-dB fixed attenuator and an Omni-Spectra type 20063-20 directional coupler.
These components furnish the proper amount of 1-GHz power to the SQUID to permit it to
generate the required rf-biased SQUID response (see f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>